NAG Fortran Library Routine Document F11DSF

ثبت نشده
چکیده

This routine solves a complex sparse non-Hermitian system of linear equations: Ax 1⁄4 b; using an RGMRES (Saad and Schultz (1986)), CGS (Sonneveld (1989)), Bi-CGSTAB(‘) (Van der Vorst (1989), Sleijpen and Fokkema (1993)), or TFQMR (Freund and Nachtigal (1991), Freund (1993)) method. F11DSF allows the following choices for the preconditioner: no preconditioning; Jacobi preconditioning (Young (1971)); symmetric successive-over-relaxation (SSOR) preconditioning (Young (1971)). For incomplete LU (ILU) preconditioning see F11DQF. The matrix A is represented in coordinate storage (CS) format (see Section 2.1.1 of the F11 Chapter Introduction) in the arrays A, IROW and ICOL. The array A holds the non-zero entries in the matrix, while IROW and ICOL hold the corresponding row and column indices. F11DSF is a black-box routine which calls F11BRF, F11BSF and F11BTF. If you wish to use an alternative storage scheme, preconditioner, or termination criterion, or require additional diagnostic information, you should call these underlying routines directly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAG Fortran Library Routine Document E04MFF=E04MFA

Note: this routine uses optional parameters to define choices in the problem specification and in the details of the algorithm. If you wish to use default settings for all of the optional parameters, you need only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a detailed description of the algorithm, the specification of the optio...

متن کامل

NAG Fortran Library Routine Document E04NKF=E04NKA

Note: this routine uses optional parameters to define choices in the problem specification and in the details of the algorithm. If you wish to use default settings for all of the optional parameters, you need only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a detailed description of the algorithm, the specification of the optio...

متن کامل

NAG Fortran Library Routine Document E02BEF

where Ni x ð Þ denotes the normalized cubic B-spline defined upon the knots i; iþ1; . . . ; iþ4. The total number n of these knots and their values 1; . . . ; n are chosen automatically by the routine. The knots 5; . . . ; n 4 are the interior knots; they divide the approximation interval x1; xm 1⁄2 into n 7 subintervals. The coefficients c1; c2; . . . ; cn 4 are then determined as the solution...

متن کامل

NAG Fortran Library Routine Document E02BAF

In order to define the full set of B-splines required, eight additional knots 1; 2; 3; 4 and nþ4; nþ5; nþ6; nþ7 are inserted automatically by the routine. The first four of these are set equal to the smallest xr and the last four to the largest xr. The representation of sðxÞ in terms of B-splines is the most compact form possible in that only nþ 3 coefficients, in addition to the nþ 7 knots, fu...

متن کامل

NAG Fortran Library Routine Document C02AGF

The routine generates a sequence of iterates z1; z2; z3; . . ., such that jP ðzkþ1Þj < jP ðzkÞj and ensures that zkþ1 þ Lðzkþ1Þ ‘roughly’ lies inside a circular region of radius jF j about zk known to contain a zero of P ðzÞ; that is, jLðzkþ1Þj jF j, where F denotes the Féjer bound (see Marden (1966)) at the point zk. Following Smith (1967), F is taken to be minðB; 1:445nRÞ, where B is an upper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006